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Abstract

As discovered by Brenier, mapping through a convex gradient gives the optimal
transport inR”. In the present article, this map is used in the setting of Gaussian-
like measures to derive an inequality linking entropy with mass displacement by
a straightforward argument. As a consequence, logarithmic Sobolev and transport
inequalities are recovered. Finally, a result of Caffarelli on the Brenier map is used
to obtain Gaussian correlation inequalities.

1. Introduction

Optimal mass transport can be used to derive several geometric and functional
inequalities. In this paper we will use tlBRENIER map [6], which is known to
give the optimal mass transport @&f. Let us recall some terminology. if and
v are two non-negative Borel measures®hwith the same total mass, say 1, a
mapT : R" — R" definedu-almost everywhere is said fush p forward to v
(or totransport . ontov) if v is the image ofx by T. This means that for every
Borel setB ¢ R”, v(B) = u(T~1(B)), or equivalently, that for every non-negative
Borel functiond : R" — Ry, [b(y)dv(y) = [ b(T (x))du(x). The idea, going
back toMonGe [15], is to find a mag@” which is “optimal” in some sense. For two
Borel probability measureg andv on R”" with finite second order moment, the
Wasserstein-Kantorovich distan®é(u, v) betweenu andv is defined by

W2(u,v) = inf f x — yl?d(x, y),
el (u,v) JrRnxR?

whereT' (i, v) denotes the set of Borel probability measuresfinx R" with

marginalsyu andv respectively. It is a classical result thidt metrizes the weak

topology of the set of probability measures®hwith finite second order moment.

The weak topology is considered with respect to continuous functigren R”
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for which £ (x)/(1 + |x|?) is bounded. A mag pushingu forward tov will be
said to beoptimal if

W2(u,v) = / lx — T(x) > du(x). 1)

While investigating optimal mass transpdBRenier [6] found a very particular
map pushing forward one probability onto another. The result, as improved by
McCAaNN [13], is as follow:

If u and v are Borel probability measuresonR” and p isabsolutely continuous
with respect to the Lebesgue measure, then there exists a convex function ¢ such
that V¢ pushes . forward to v. Furthermore, V¢ isuniquely determined p-almost
everywhereand, if 4 and v havefinite second order moment, V¢ realizesthe optimal
transport in the sense of (1) between . and v.

Observe thap is differentiable almost everywhere since it is convex. The map
T = V¢ is usually referred to athe Brenier map. Some authors also speak of
monotone mass transport. Whenv is itself absolutely continuous with respect to
the Lebesgue measure, thEn! = (V¢)~! pushes forward tou. If 1 andv are
absolutely continuous Borel probability measures with finite second order moment,
itis convenient to set(x) = ¢ (x) — |x|2/2 so that the Brenier map takes the form
T(x) = x + VO(x). Indeed (1) then becomes

W2(u,v) = / V)% dp(x).

If f and g are non-negative functions dR” with [ f = (¢ = 1 and
T(x) = V¢(x) is the Brenier map pushing(x) dx forward to g(y) dy, then
by the definition of mass transport,

f b(3)g(y) dy = / b(Ve () f (x)dx %)

for every non-negative Borel functian : R” — R.. Whenever the change of
variabley = V¢ (x) is licit, (2) leads to a so-called Monge-Armpe equation:

f(x) = det(Hess¢) g(V¢ (x)) (3

However it may happen th&f¢ exists only almost everywhere and is not
differentiable in the usual sense. To handle this non-regularity we use, following
McCANN [14], the notion of Hessian in the sense of Aleksandrov. A funcfion
differentiable atc € R”" is said to have a Hessian in the sense of Aleksandrav at
if there exists a symmetric linear map such that

Px +u) =¢(x) + Vo ().u + SHuu + o(|ul?).

The symmetric linear maf is said to be the Hessian in the sense of Aleksandrov
and will be denoted by Hes®. A convex functionp admits a Hessian in the sense
of Aleksandrov almost everywhere (see [8]) and, whenever it exists, Jpeiss
non-negative. We emphasize the resulviafCann [14]:
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Let « and v be two Borel probability measures on R” with density f and g
respectively, and let V¢ be the Brenier map pushing u forward to v. There exists
aBorel set X of measure 1 for u such that for every x € X the Hessian Hess; ¢ of
¢ in the sense of Aleksandrov exists at x and equation (3) holds.

The next section will be devoted to transport (Corollary 2) and logarithmic
Sobolev inequalities (Corollary 1) for the Gaussian measure and for a class of
Boltzmann measures. Though the language was not the same, one of the first uses
of mass transport in the setting of Gaussian measure was the wdrkiofey [12].
Extending his metho®oBkov & LEpoUx [5] used the Rekopa-Leindler inequality
to derive transport and logarithmic Sobolev inequalities. Since #leoPe-Leindler
inequality is usually proved by means of mass transport, it appeared natural to
ask whether the logarithmic Sobolev inequality could be proved directly by mass
transport. A positive answer was given in the workafro [16] where interpolation
along mass transport was used to derive a new interpretation of the logarithmic
Sobolevinequality. More recently, the work@fto & ViLLani [17] clearly showed
that inequalities involving entropy can be recover by using the equations satisfied
by the interpolated densities, such as Hamilton-Jacobi and Euler equations. We
will reproduce their results by surprisingly simple arguments that do not involve
interpolation along mass transport. Note that a similar, though less direct, method
was used bBLowER [3] to prove the transport inequality of Corollary 2.

The last section will be devoted to the study of some particular cases of the
Gaussian correlation inequality conjecture

Yn(AN B) Z yu(A)ya(B), 4

wherey, is the standard-dimensional Gaussian measure ahdB C R” are
convex symmetric sets. We will use a recent observatidbwefareLL1 [7] on the
Lipschitz behavior of the Brenier map to reproduce a resulietct [10] and
also to obtain some new non-symmetric extensions of a ressibak [19] for (4)
whenB is a strip.

2. Inequalitiesinvolving entropy

Let us fix some notation. We will work on the standard Euclidean space
(R", | - |, .) and with the standard Gaussian measyyegiven by dy,(x) =

(1/8/27)" e~ *1?/24x . Theentropy with respect to a probability of a non-negative
function f : R” — R, is defined by

Ent.(f) := f flog fdu — ( / fdu> log < / fdu),

and theFisher information with respect tq: of a smooth non-negativg is defined
by:

2
L.(f) ;:/@du=4/|v\/ﬂ2du.
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The Gaussian logarithmic Sobolev inequality discoveredhyss [9] states
that, for every smooth non-negative functigron R”",

Ent,, () < 31, ()
As an appetizer, let us give a simple proof of this inequality.

Proof. We may assum¢ fdy, = 1. LetV¢ be the Brenier map betweefiy,
andy,. Write 6 (x) = ¢ (x) — 5|x|? so thatV¢ (x) = x + VO(x). Denoting by the
identity matrix, we havd + Hess# = 0. The Monge-Ampre equation holding
fdu-a.e.is:

F)e¥/2 — det(] + Hess.0) e W HVI@E/2
After taking the logarithm, we have:
log f (x) = —3x + VO(x)[* + 3|x|* + log det/ + Hess; )
= —x.VO(x) — 3|VO(x)[* + log det! + HessH)
< —x.VO(x) — 3|VO) 12 + Ab(x),

where we used lag + 1) < r whenever 1 ¢ > 0. We integrate with respect to
fdyn:

/flogfd)/n é/f[AH—x.VG]an—/%|V9|2fdyn-

By integration by parts we get:

[ rogsar < - [vossay, —/;weﬁfdyn

2 2
_ _/%‘\/?ve(xw AZACY dy,,(x)+%/ VI 40

v f
1[vrP
2/ I dyn.

The careful reader may have noticed that the proof above is not completely
correct. Indeed, we assumed that the trace of the Hessian in the sense of Aleksandrov
coincided with the Laplacian in the sense of distribution. This is not true in general.
However there is an inequality (going in the right direction for us!) linking these
two notions. For a convex functiah possibly perturbed by a quadratic polynomial
(for instanced (x) = ¢ (x) — |x|2/2) the Laplacian in the sense of Aleksandrov is
the trace of the Hess. It is Borel function defined almost everywhere on the
domain of¢ (see the Appendix) and we will denote it llys¢. We introduce
the (interior) domain of a convex functiop as the convex open set given by
Dom(¢) := int{¢ < +o0}.

Lemma 1. Let ¢ beaconvexfunctiononR"” withdomain U . Then for every smooth,
compactly supported in U, non-negative function f, the following holds:

/fAAqs < —/Vf-V¢-

A
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The proof of the lemma will be given in the Appendix. The lemma obviously
also applies to the case of a functiétx) = ¢(x) — |x|2/2 where¢ is convex.
Still, there is a gap in the argument above, sifiageed not be supported inside the
domain of¢. Indeed, assumég is compactly supported and I€f(x) = V¢ (x) be
the Brenier map pushing dy, forward toy,. ThenV¢ necessarily tends teo at
many points of the boundary of the supportfofHowever this problem is easy to
remove by approximation, as we will see.

Following the same method, it is possible to pr@a AGrRAND’S inequality
[21] for the Wasserstein-Kantorovich distance. But it would then be preferable
to transporty, on fdy,. As a matter of fact, transport and logarithmic Sobolev
inequalities follow from a general inequality holding for a wide class of measures.
This inequality is closely related to the results and the comments of the work of
OtT1o & ViLLaNI [17]. They used interpolation along mass transport. Our proof,
inspired by their work, is direct and much simpler. Itis more or less the same as the
one presented above in the case of the Gaussian measure, and does not require any
partial-differential-equation argument. For a reand a real symmetric matrix
we shall writeA = cfor A = cl.

Theorem 1. Let u bea probability measure on R” of theformdu(x) = e~V ®dx,
where V is a twice differentiable function satisfying HessV = ¢ for some ¢ € R.
Let f, g : R" — R, be non-negative compactly supported functions, with f C*
and [ fdu = [gdu.If T(x) = x 4+ V6(x) is the Brenier map pushing f du
forwardto g d i, then

ENt (5) 2 Ent, () + [ VAV0du+ 5 [ 190P fd

Proof. We can assume thdt fdu = [ gdu = 1. Sincef andg are compactly
supportedV6 remains bounded on the support ofind thus the support of is
contained in Don®). The Monge-Ampte equation holdingdu-a.e. is

F)e VO = g(T(x)) e VT det(] + Hess. ).
After taking the logarithm, we get
logg(T(x)) =log f(x) + V(x + VO(x)) — V(x) — log detI + Hess,0).

As before, we use the fact that log det- Hess ) < A 40(x). By integral Taylor
expansion, we get

V(x + VO(x)) — V(x) = VV(x).VO(x) + %|V9(x)|2.
This implies thatfdu-a.e.
logg(T(x)) = 10g £ (x) + VV(x).VO(x) — Aa0(x) + §|ve(x>|2.

Now, we integrate with respect ttd . First, observe that by the definition of the
transport,

/(|098(T(X)))f(X)dM(X) = /('098(X))g(X)dM(X) = Ent,(g).
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Integration by parts (Lemma 1) gives:

/[VV(x)-VG(X) — Ax0 )] f ()dp(x) = /VQ(x)-Vf(X)dM.

This ends the proof of the theoremo

We present now some direct consequences of Theorem 1. We start with the
Bakry-Emery [1] logarithmic Sobolev inequality &f.

Corollary 1 (Logarithmic Sobolev inequality [)] Let « be a probability measure
on R” of theformdu(x) = e~V ®dx, where V is a twice differentiable function
satisfying HessV = ¢ for some ¢ > 0. Then, for every non-negative smooth
function f,

Ent,(f) = ! 1u.(f)
tﬂ- = 2 I3 .
Proof. We can assume thgtis compactly supported. Lgtbe any non-negative

compactly supported function withgdu = [ f du = 1, say. Apply Theorem 1
to f and tog and use the fact that

2 2
c 2 ¢ |Vf 1V/fi
VIV 4+ - fIVO| = - f | — +VO| — —
f +2f| | Zf‘cf—i- 2% f
2
2_i|vf|.
- 2 f

This gives
1
Ent. () + 2_cl“(f) Z Ent. ().
Now if g — 1, we have Enf(g) — 0, and this finishes the proof.o

We now derive a generalization ®hLAGRAND’S transport inequality [21] re-
cently obtained bBLOWER [3], OTTO & VILLANI [17], BoBKOV & LEDOUX [5].

Coroallary 2 (Transport inequality Let « be a probability measure on R” of the
form du(x) = e V®dx, where V is a twice differentiable function satisfying
HessV = ¢ for somec > 0. Then, for every non-negative function g with [ gdu =
11

2
W2(u, gdp) < —Entu(9).

Proof. Assume first thag is compactly supported. Formally the result follows
by applying theorem 1 tg = 1. Let f,, be a sequence of non-negative smooth
compactly supported functions such thfat— 1 with [ |V./f,1?du — 0 and

f» < 2. Normalize the sequence so thaf, du = 1. LetT,(x) = x + V6,(x) be
the Brenier map pushing, du forward tog du and apply Theorem 1. We know
that Eng,(f,) — O andf |VO2f,du = W2(fdu, gdp) —> W2(u, gdp). We
havel, (f,) — 0 and by Hlder’s inequality,

Vi
’ [ ve, .andu‘ < / [ vonesan | %du = W(fudi, gdi)y/Tu (),
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we deduce thaf V6, .V f, — 0. Thus at the limit we get

C
Ent, (9) 2 5 W(u, gdp).
Again by approximation the result extends to non-compactly suppgited O

Finally, we recover an inequality linking the entropy, the Fisher information
and the Wasserstein-Kantorovich distance, and referred to as “HWI inequality” in
the work of Otto and Villani.

Corallary 3 (HWI inequality [16,17]).Let 1« be a probability measure on R” of
theformdu(x) = e~V ®dx, where V is a twice differentiable function satisfying
HessV = ¢ for some ¢ € R. Then, for every non-negative compactly supported
smooth function f with [ fdu = 1,

Ent, () < W, fdu)J/T,(f) — ngw, fdpw).

Proof. Apply Theorem 1 tof and to some non-negative compactly suppoged
and use again

2
/ V.V fdu > _\/ / VO fdu f 'VJ{ Pan = —wrdu, sa VI .

Thus we have
C
Ent,(g) = Ent, (f) — W(fdu, gdw)/1.(f) + EWz(fdM, gdu).
Wheng — 1 we get the result. O

Otto and Villani observed that Corollary 1 implies Corollary 2 (actually with-
out any convexity condition o), and that Corollary 2 and Corollary 3 imply
Corollary 1.

Let us comment briefly on the equality cases in these inequalities when the
measureu is the Gaussian measuyg. In this case the main inequality that was
used,assuming the Brenier map was smooth (i.¢.wasC?), was

logdef(I + Hese) < A6.

Equality cases require He#s= 0 or, equivalentlyVé = u for someu € R". Thus

the Brenier map needs to be a translation. In order to prove the logarithmic Sobolev
or the transport inequality, we také or ¢ equal to 1 and in these cases we can
easily check that, iW6 = u, there is equality at every step. So we can guess that the
equality cases in these two inequalities are given by functfofws which fdy, is

a translation of/,, meaning also functiong that are exponential f (x) = c e**.
Making this argument rigorous would require too many technical results on the
behavior of the Brenier map and on the regularity of the solutions of the Monge-
Ampeére equation, and would not simplify the existing proofs. However it helps to
understand the picture: exponential functions arise naturally when translating the
Gaussian measure.
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3. Applications of aresult of Caffarelli

This section deals with non-negatilag-concave functions f onR" (meaning
log f is concave) and convex setff. In this particular setting, whergandg have
convex supports, regularity results@KrrareLLI (See [7] and references therein)
ensure that the Brenier map betwegmndg is smooth under weak assumptions
on f andg. We will always assume that we are in a situation were these regularity
results apply.

RecentlyCAFrFARELLI [7] made a crucial observation on the behavior of the Bre-
nier map. He proved that given a Gaussian probability measaral a probability
measurew with log-concave density with respect to the Brenier map pushing
forwardp ontou is a contraction (i.e., 1-Lipschitz). We can even have a quantitative
estimate. Lefu be a probability measure of the forw(x) = ¢~" ) dx where
V is a smooth function with Hesy > ¢ > 0. Then if V¢ is the Brenier map
pushingy, forward tou,we have

0§Hess¢§%~ )

Let us mention a direct consequence of this estimate. It is possible to transport
isoperimetric, logarithmic Sobolev or Poinegthis was mentioned by Caffarelli)
inequalities from the Gaussian measure to the measurais allows us to rewrite

the inequalities oBakry & EmEeRY [1] (Corollary 1) and ofBakry & LEDOUX

[2] for the measuregw. For instance, the strongest of these inequalities, the Gaus-
sian isoperimetric inequality, states in its functional form [4] that, for any smooth
compactly supported functiofi : R” — [0, 1],

u ( / fdyn) < [ e+ v, (6)

Hereld(a) is the Gaussian surface measure of any half-space of Gaussian measure
a € [0, 1]. In other words, if

! 2,50 du
(1) =f P
—00 \/27'[

thenid = @' o d~L. Now, for i« as above, we deduce from (6) that for every smooth
compactly supported function: R" — [0, 1],

U(/ gdu) < /‘/L{Z(g)-i— %Ivglzdu- )

Indeed, for giverg apply (6) to f(x) = g(V¢(x)) and use (5) together with the
definition of mass transport. Inequality (7) appeared first in [2]. It is known that
Corollary 1 is a consequence of (7) (see [11] for a written proof).

The applications of the result of Caffarelli we would like to outline concern the
Gaussian correlation inequality (see [18] for references and partial results). This
celebrated conjecture claims that, for two symmetric convexAetsd B,

vn(AN B) 2 Yn(A)Yn(B). (8
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An equivalent way of stating the Gaussian correlation inequality is to say that, for
every even non-negative log-concave functignandg,

f o (] ) (f )

One of the best results in this direction is dueHarcg [10] who proved that

(8) holds whenA is any symmetric convex set aml is an ellipsoid, possibly
degenerate. Ellipsoids are assumed to be centered at the origin. By degenerate
ellipsoid, we simply mean a limit of ellipsoids, as for instance a symmetric strip,

B, ={x e R"; |x.ul| £1}.

In particular, Harg's inequality generalized a result®&bak [19] who proved (8)
whenB is a symmetric strip. The proof of Haegs based on a semi-group method
involving a modified Ornstein-Uhlenbeck semi-group. We would like to present
here a simple proof that uses the Brenier map and the result of Caffarelli. The
ellipsoid B is given by a positive symmetric linear m&pfor whichB = {|Hx| <

1}. We introduce the Gaussian probability measugven by

1
(v/27)"/detH ¢

After the change of variable = v H~1x, Hargg's inequality becomes:

dp(x) = —H™bxx g

p(ANB3) 2 p(A)p(By),

for every convex symmetric set and for the Euclidean unit baB?. Let p4 be
the normalized restriction of the measwréo the setd, andT be the Brenier map
betweeno andp,4. By the result of Caffarelli we know th&t is a contraction. And
by symmetry of the situatiory; (—x) = —T (x). In particular? (0) = 0. Hence

T(By) C Bj.

But then
p(AN By)
p(A)
which is precisely the desired correlation inequality.

As the reader may have noticed, the symmetryAofvas only used to give
T(0) = 0. This allows us to obtain some (weaker) statement for non-symmetric
convex bodies. For a convex bo#fylet us denote by ISX) the group of isometries
leavingK (globally) invariant and by Figk) the subset oK,

= pa(BY) = p(T"(BY)) = p(BY),

FiX(K):=={x e K; r(x) =x Vr elso(K)}.

Of course, ifK is symmetric, FiXK) = {0}, sincex — —x has only 0 as fixed
point. But, for instance, for the regular simplax we also have FigA) = {0}. We
have:
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Proposition 1. Let A be a convex body with Fix(A) = {0}. Then

va(AN BS) 2 Vn(A)Vn(BS)‘

Proof. We have to prove that, if' is the Brenier map pushing, forward toy,,
the normalized restriction of the Gaussian measu, tinen7 (0) = 0.

Claim. Let T be the Brenier map pushing y, forward to y4 (the normalized re-
gtriction of the Gaussian measureto A). Then for an isometry r the map 7, (x) :=
r~1T (r(x)) isthe Brenier map pushing y, forward to Yr-1(A)-

Proof of theclaim. The Gaussian measure is invariant under isometries and;thus
clearly pushey;, forward toy,-1.4,. We need to check thd} is the Brenier map,
i.e., that7, is the gradient of a convex function. If = V¢, introduce¢, (x) =

¢ (r(x)). Theng, is convex andV¢, (x) = r*Ve(r(x)) = r 1T (r(x)) = T} (x).

O

We finish the proof of the proposition. The previous claim combined with the
uniqueness of the Brenier map ensures thaty farlso(A), we haveTl, = T and
T (r(x)) = r(T(x)). This givesT (0) = r(7 (0)) and thereford (0) € Fix(A).And
by assumption this implie® (0) = 0 and finishes the proof.o

The next non-symmetric result is related to a statemefzakek & WERNER
[20]. They proved that, for every convex body of R” and for every stripB
symmetric with respect to the Gaussian barycentdr, ¢f, (AN B) = y,,(A) v, (B).
Our result will deal with “medians” rather than barycenters. First we treat the one-
dimensional case. We introduce the median of a continuous fungtidR — R
with respect to the Gaussian measyras the set

+00 1
med, (f) 1= 1x eR;f fdy = —f fdyyt.
X 2 R
For a log-concave function, the median is obviously unique.

Proposition 2. Let f beanon-negativelog-concavefunctionon R with med f) =:
x0. Then, for every o = 0,

x0+o
f fdy 2y([—a,a])/l;fdy 2y([xo—a,xo+a])/Rde-

0o—«a

Proof. Let T be the Brenier map pushing forward to f dy /([ f dy). Mass
transport in dimension one preserves the median. Indeed, we have by definition,

Jro = (L) [ =5 (frr)

ThereforeT (0) = xp. This implies, sincel" is a contraction, thal' ([—«, «]) C
[xo — @, xo + ] which in turn gives

x0+o
/ fd)//</ fdy) = (T xo — @, x0 + al) = y([—a, al).
X R

0—«o
And by the log-concavity of the Gaussian measy@r—o, o]) = y ([xo — o, x0 +
al). O
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Remark 1. An equivalent way of stating Proposition 2 is to say that is a non-
negative log-concave function d with med, (f) =: xo, then for everyeven
non-negative log-concave functign

/f(X)g(x—xo)dy(X)E/ fdy/gdyzfde/g(x—XO)dy(X)-
R R R R R

Indeed, with the same notation as in the above proof, we have

[ rorse—warco /([ rav) = [ erw -xaayw.
R R R

SinceT is a (increasing) contraction, we can wiitéx) = x+6’ wheref is concave
and satisfie8’(0) = xo. Then,T(x) —xg = x —x0+6'(x) = x + (8'(x) — 6'(0)).
The functiond’ is non-increasing, thereforE(x) — xg is bigger thanx if x is
negative, and smaller thanif x is non-negative. But the functiog, being even
and log-concave is hon-decreasingln and non-increasing dR.. This implies
thatg(T (x) — xp) = g(x), which gives the result.

Proposition 2 leads to a generalization of the result of Sidak. For a convex body
K inR" and a directiom (which means for us a vectowith |u| = 1), the Gaussian
median meg, (K, u) of K in the directiornu is the unique real satisfying

yu(K N {xu 2 1)) = Sy, (K).

Corollary 4. Let K be a convex body of R”. Fix a direction u and set 1y :=
med,, (K, u). Then, for every strip C of theformC = {to — « < |x.u| = t9 + «},

Y (KN C) 2 yu(K)y ([—a, al) 2 yu(K)ya(C).

Proof. Introduce the section functiom, (z) = y,—1(K N (ut + ru)). By the
Préekopa-Leindler inequality, the functiofy is log-concave ofR. We have

Vn(K)Z/Rfu(t)dV(t)

and
“+00

(K N{x.u 2 10}) = fu®)dy(0).

10
In particular f,, hastp as Gaussian median. Apply Proposition 2 and observe that

to+o
/ Ju@) dy (1) = yo(K N C). o
o—«o

Remark 2. The use of the median is natural if nice correlation inequalities are
desired, in the spirit of the results of Szarek and Werner. However it was not crucial
in the proof. Indeed, lef be a non-negative log-concave function Rrand fix

t € R. Letk € [0, 1] be such that

/_toofdyzk/;%fdy.
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Then, by definition of mass transport, the Brenier nifapushingy forward to
fdy /([ fdy) satisfies (T ~1(t)) = k, where® denotes as before the Gaussian
distribution function. Using the fact thdt is a contraction leads to the following
inequality: fora € R,

H+a
Fdy =y — a, & Xk) + ) /R fdy. )

t—o
It is then possible to derive a minorant for the intersection of a convex boly in
with a strip. It must be noted that when applied to the barycenter inequality (9)
might be weaker than the one of Szarek and Werner. For instance, if the barycenter
is at the origin and we apply (9) for= 0, the termy ([~ 1(k) — a, D~ 1(k) + «])
on right-hand side is certainly smaller thaf—«, «]).

4. Appendix: proof of Lemma 1

For a convex functiorp with domainU, the functionA 4¢ defined almost-
everywhere is non-negative ang (in the sense of distributions) is a non-negative
measure o/ . Recall that, by Rademacher’s theorem (see [8]), the fungtibas
a gradienV ¢ almost everywhere, and the is equal to the derivative af in the
sense of distribution. Therefore Lemma 1 is equivalent to

Apgp < Ad.

We are led to prove that for any smooth, compactly supportéd, inon-negative
function f,

[ 1o < [oar (10)

Forh > 0 introduce, for any functiog onRR",

g + her) + g(x — hey) — 2g(x)

Then, denoting byd¢)11 := Hess, ¢ (e1).e1 the second derivative in the sense of
Aleksandrov (where it exists) @f in the directiore1, we have, almost everywhere,

;!iino ¢n(x) = (0a¢)11(x).

/¢hf=/¢fh~

Therefore by Fatou's lemma singg = 0,

/ Foad)ns < liminf / o = f 6011

We have the same inequalities for the other directions and this leads to (10).

But obviously,
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