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Abstract

As discovered by Brenier, mapping through a convex gradient gives the optimal
transport inRn. In the present article, this map is used in the setting of Gaussian-
like measures to derive an inequality linking entropy with mass displacement by
a straightforward argument. As a consequence, logarithmic Sobolev and transport
inequalities are recovered. Finally, a result of Caffarelli on the Brenier map is used
to obtain Gaussian correlation inequalities.

1. Introduction

Optimal mass transport can be used to derive several geometric and functional
inequalities. In this paper we will use theBrenier map [6], which is known to
give the optimal mass transport onR

n. Let us recall some terminology. Ifµ and
ν are two non-negative Borel measures onR

n with the same total mass, say 1, a
mapT : R

n → R
n definedµ-almost everywhere is said topush µ forward to ν

(or to transport µ ontoν) if ν is the image ofµ by T . This means that for every
Borel setB ⊂ R

n, ν(B) = µ(T −1(B)), or equivalently, that for every non-negative
Borel functionb : R

n → R+,
∫
b(y)dν(y) = ∫

b(T (x))dµ(x). The idea, going
back toMonge [15], is to find a mapT which is “optimal” in some sense. For two
Borel probability measuresµ andν on R

n with finite second order moment, the
Wasserstein-Kantorovich distanceW(µ, ν) betweenµ andν is defined by

W2(µ, ν) := inf
π∈�(µ,ν)

∫
Rn×Rn

|x − y|2 dπ(x, y),

where�(µ, ν) denotes the set of Borel probability measures onR
n × R

n with
marginalsµ andν respectively. It is a classical result thatW metrizes the weak∗
topology of the set of probability measures onR

n with finite second order moment.
The weak∗ topology is considered with respect to continuous functionsf on R

n
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for which f (x)/(1 + |x|2) is bounded. A mapT pushingµ forward toν will be
said to beoptimal if

W2(µ, ν) =
∫

|x − T (x)|2 dµ(x). (1)

While investigating optimal mass transport,Brenier [6] found a very particular
map pushing forward one probability onto another. The result, as improved by
McCann [13], is as follow:

Ifµ and ν are Borel probability measures on R
n andµ is absolutely continuous

with respect to the Lebesgue measure, then there exists a convex function φ such
that ∇φ pushes µ forward to ν. Furthermore, ∇φ is uniquely determined µ-almost
everywhere and, ifµ and ν have finite second order moment, ∇φ realizes the optimal
transport in the sense of (1) between µ and ν.

Observe thatφ is differentiable almost everywhere since it is convex. The map
T = ∇φ is usually referred to asthe Brenier map. Some authors also speak of
monotone mass transport. Whenν is itself absolutely continuous with respect to
the Lebesgue measure, thenT −1 = (∇φ)−1 pushesν forward toµ. If µ andν are
absolutely continuous Borel probability measures with finite second order moment,
it is convenient to setθ(x) = φ(x)− |x|2/2 so that the Brenier map takes the form
T (x) = x + ∇θ(x). Indeed (1) then becomes

W2(µ, ν) =
∫

|∇θ(x)|2 dµ(x).

If f and g are non-negative functions onRn with
∫
f = ∫

g = 1 and
T (x) = ∇φ(x) is the Brenier map pushingf (x) dx forward to g(y) dy, then
by the definition of mass transport,∫

b(y)g(y) dy =
∫
b(∇φ(x))f (x)dx (2)

for every non-negative Borel functionb : R
n → R+. Whenever the change of

variabley = ∇φ(x) is licit, (2) leads to a so-called Monge-Amp`ere equation:

f (x) = det(Hessxφ) g(∇φ(x)) (3)

However it may happen that∇φ exists only almost everywhere and is not
differentiable in the usual sense. To handle this non-regularity we use, following
McCann [14], the notion of Hessian in the sense of Aleksandrov. A functionφ

differentiable atx ∈ R
n is said to have a Hessian in the sense of Aleksandrov atx

if there exists a symmetric linear mapH such that

φ(x + u) = φ(x)+ ∇φ(x).u+ 1
2Hu.u+ o(|u|2).

The symmetric linear mapH is said to be the Hessian in the sense of Aleksandrov
and will be denoted by Hessxφ. A convex functionφ admits a Hessian in the sense
of Aleksandrov almost everywhere (see [8]) and, whenever it exists, Hessxφ is
non-negative. We emphasize the result ofMcCann [14]:



Some Applications of Mass Transport to Gaussian-Type Inequalities 259

Let µ and ν be two Borel probability measures on R
n with density f and g

respectively, and let ∇φ be the Brenier map pushing µ forward to ν. There exists
a Borel set X of measure 1 for µ such that for every x ∈ X the Hessian Hessxφ of
φ in the sense of Aleksandrov exists at x and equation (3) holds.

The next section will be devoted to transport (Corollary 2) and logarithmic
Sobolev inequalities (Corollary 1) for the Gaussian measure and for a class of
Boltzmann measures. Though the language was not the same, one of the first uses
of mass transport in the setting of Gaussian measure was the work ofMaurey [12].
Extending his method,Bobkov& Ledoux [5] used the Pr´ekopa-Leindler inequality
to derive transport and logarithmic Sobolev inequalities. Since the Pr´ekopa-Leindler
inequality is usually proved by means of mass transport, it appeared natural to
ask whether the logarithmic Sobolev inequality could be proved directly by mass
transport.A positive answer was given in the work ofOtto [16] where interpolation
along mass transport was used to derive a new interpretation of the logarithmic
Sobolev inequality. More recently, the work ofOtto& Villani [17] clearly showed
that inequalities involving entropy can be recover by using the equations satisfied
by the interpolated densities, such as Hamilton-Jacobi and Euler equations. We
will reproduce their results by surprisingly simple arguments that do not involve
interpolation along mass transport. Note that a similar, though less direct, method
was used byBlower [3] to prove the transport inequality of Corollary 2.

The last section will be devoted to the study of some particular cases of the
Gaussian correlation inequality conjecture

γn(A ∩ B) � γn(A)γn(B), (4)

whereγn is the standardn-dimensional Gaussian measure andA,B ⊂ R
n are

convex symmetric sets. We will use a recent observation ofCaffarelli [7] on the
Lipschitz behavior of the Brenier map to reproduce a result ofHargé [10] and
also to obtain some new non-symmetric extensions of a result ofSidak [19] for (4)
whenB is a strip.

2. Inequalities involving entropy

Let us fix some notation. We will work on the standard Euclidean space
(Rn, | · |, . ) and with the standard Gaussian measureγn given by dγn(x) =
(1/

√
2π)n e−|x|2/2dx. Theentropy with respect to a probabilityµ of a non-negative

functionf : R
n → R+ is defined by

Entµ(f ) :=
∫
f logf dµ −

(∫
f dµ

)
log

(∫
f dµ

)
,

and theFisher information with respect toµ of a smooth non-negativef is defined
by:

Iµ(f ) :=
∫ |∇f |2

f
dµ = 4

∫ ∣∣∇√
f

∣∣2dµ.
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The Gaussian logarithmic Sobolev inequality discovered byGross [9] states
that, for every smooth non-negative functionf onR

n,

Entγn(f ) � 1
2Iγn(f ).

As an appetizer, let us give a simple proof of this inequality.

Proof. We may assume
∫
f dγn = 1. Let∇φ be the Brenier map betweenf dγn

andγn. Writeθ(x) = φ(x)− 1
2|x|2 so that∇φ(x) = x+∇θ(x). Denoting byI the

identity matrix, we haveI + Hessxθ � 0. The Monge-Amp`ere equation holding
f dµ-a.e. is:

f (x)e−|x|2/2 = det(I + Hessxθ) e
−|x+∇θ(x)|2/2.

After taking the logarithm, we have:

logf (x) = −1
2|x + ∇θ(x)|2 + 1

2|x|2 + log det(I + Hessxθ)

= −x.∇θ(x)− 1
2|∇θ(x)|2 + log det(I + Hessxθ)

� −x.∇θ(x)− 1
2|∇θ(x)|2 +�θ(x),

where we used log(1 + t) � t whenever 1+ t � 0. We integrate with respect to
f dγn: ∫

f logf dγn �
∫
f [�θ − x.∇θ ]dγn −

∫
1
2|∇θ |2 f dγn.

By integration by parts we get:∫
f logf dγn � −

∫
∇θ.∇f dγn −

∫
1

2
|∇θ |2f dγn

= −
∫

1

2

∣∣∣∣√f∇θ(x)+ ∇f (x)√
f

∣∣∣∣
2

dγn(x)+ 1

2

∫ |∇f |2
f

dγn

� 1

2

∫ |∇f |2
f

dγn.

The careful reader may have noticed that the proof above is not completely
correct. Indeed, we assumed that the trace of the Hessian in the sense ofAleksandrov
coincided with the Laplacian in the sense of distribution. This is not true in general.
However there is an inequality (going in the right direction for us!) linking these
two notions. For a convex functionφ, possibly perturbed by a quadratic polynomial
(for instanceθ(x) = φ(x) − |x|2/2) the Laplacian in the sense of Aleksandrov is
the trace of the Hessxφ. It is Borel function defined almost everywhere on the
domain ofφ (see the Appendix) and we will denote it by�Aφ. We introduce
the (interior) domain of a convex functionφ as the convex open set given by
Dom(φ) := int{φ < +∞}.
Lemma 1. Letφ be a convex function on R

n with domainU . Then for every smooth,
compactly supported in U , non-negative function f , the following holds:∫

f�Aφ � −
∫

∇f.∇φ .
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The proof of the lemma will be given in the Appendix. The lemma obviously
also applies to the case of a functionθ(x) = φ(x) − |x|2/2 whereφ is convex.
Still, there is a gap in the argument above, sincef need not be supported inside the
domain ofφ. Indeed, assumef is compactly supported and letT (x) = ∇φ(x) be
the Brenier map pushingf dγn forward toγn. Then∇φ necessarily tends to∞ at
many points of the boundary of the support off . However this problem is easy to
remove by approximation, as we will see.

Following the same method, it is possible to proveTalagrand’s inequality
[21] for the Wasserstein-Kantorovich distance. But it would then be preferable
to transportγn on f dγn. As a matter of fact, transport and logarithmic Sobolev
inequalities follow from a general inequality holding for a wide class of measures.
This inequality is closely related to the results and the comments of the work of
Otto & Villani [17]. They used interpolation along mass transport. Our proof,
inspired by their work, is direct and much simpler. It is more or less the same as the
one presented above in the case of the Gaussian measure, and does not require any
partial-differential-equation argument. For a realc and a real symmetric matrixA
we shall writeA � c for A � cI .

Theorem 1. Let µ be a probability measure on R
n of the form dµ(x) = e−V (x)dx,

where V is a twice differentiable function satisfying HessV � c for some c ∈ R.
Let f, g : R

n → R+ be non-negative compactly supported functions, with f C1

and
∫
f dµ = ∫

g dµ. If T (x) = x + ∇θ(x) is the Brenier map pushing f dµ
forward to g dµ, then

Entµ(g) � Entµ(f )+
∫

∇f.∇θ dµ+ c

2

∫
|∇θ |2f dµ.

Proof. We can assume that
∫
f dµ = ∫

gdµ = 1. Sincef andg are compactly
supported,∇θ remains bounded on the support off and thus the support off is
contained in Dom(θ). The Monge-Amp`ere equation holdingf dµ-a.e. is

f (x)e−V (x) = g(T (x)) e−V (T (x)) det(I + Hessxθ).

After taking the logarithm, we get

logg(T (x)) = logf (x)+ V (x + ∇θ(x))− V (x)− log det(I + Hessxθ).

As before, we use the fact that log det(I + Hessxθ) � �Aθ(x). By integral Taylor
expansion, we get

V (x + ∇θ(x))− V (x) � ∇V (x).∇θ(x)+ c

2
|∇θ(x)|2.

This implies thatf dµ-a.e.

logg(T (x)) � logf (x)+ ∇V (x).∇θ(x)−�Aθ(x)+ c

2
|∇θ(x)|2.

Now, we integrate with respect tof dµ. First, observe that by the definition of the
transport,∫

(logg(T (x)))f (x)dµ(x) =
∫
(logg(x))g(x)dµ(x) = Entµ(g).
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Integration by parts (Lemma 1) gives:∫
[∇V (x).∇θ(x)−�Aθ(x)]f (x)dµ(x) �

∫
∇θ(x).∇f (x)dµ.

This ends the proof of the theorem.��
We present now some direct consequences of Theorem 1. We start with the

Bakry-Emery [1] logarithmic Sobolev inequality onRn.

Corollary 1 (Logarithmic Sobolev inequality [1]). Let µ be a probability measure
on R

n of the form dµ(x) = e−V (x)dx, where V is a twice differentiable function
satisfying HessV � c for some c > 0. Then, for every non-negative smooth
function f ,

Entµ(f ) � 1

2c
Iµ(f ).

Proof. We can assume thatf is compactly supported. Letg be any non-negative
compactly supported function with

∫
g dµ = ∫

f dµ = 1, say. Apply Theorem 1
to f and tog and use the fact that

∇f.∇θ + c

2
f |∇θ |2 = c

2
f

∣∣∣∣∇fcf + ∇θ
∣∣∣∣
2

− 1

2c

|∇f |2
f

� − 1

2c

|∇f |2
f

.

This gives

Entµ(g)+ 1

2c
Iµ(f ) � Entµ(f ).

Now if g → 1, we have Entµ(g)→ 0, and this finishes the proof.��
We now derive a generalization ofTalagrand’s transport inequality [21] re-

cently obtained byBlower [3], Otto & Villani [17], Bobkov & Ledoux [5].

Corollary 2 (Transport inequality). Let µ be a probability measure on R
n of the

form dµ(x) = e−V (x)dx, where V is a twice differentiable function satisfying
HessV � c for some c > 0. Then, for every non-negative function g with

∫
gdµ =

1,

W2(µ, gdµ) � 2

c
Entµ(g).

Proof. Assume first thatg is compactly supported. Formally the result follows
by applying theorem 1 tof ≡ 1. Let fn be a sequence of non-negative smooth
compactly supported functions such thatfn → 1 with

∫ |∇√
f n|2 dµ → 0 and

fn � 2. Normalize the sequence so that
∫
fn dµ = 1. LetTn(x) = x + ∇θn(x) be

the Brenier map pushingfn dµ forward tog dµ and apply Theorem 1. We know
that Entµ(fn) → 0 and

∫ |∇θ |2fndµ = W2(fndµ, gdµ) −→ W2(µ, gdµ).We
haveIµ(fn)→ 0 and by Hölder’s inequality,

∣∣∣∣
∫

∇θn .∇fndµ
∣∣∣∣ �

√∫
|∇θn|2fndµ

∫ |∇fn|2
fn

dµ = W(fndµ, gdµ)
√
Iµ(fn),
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we deduce that
∫

∇θn .∇fn → 0. Thus at the limit we get

Entµ(g) � c

2
W2(µ, gdµ).

Again by approximation the result extends to non-compactly supportedg’s. ��
Finally, we recover an inequality linking the entropy, the Fisher information

and the Wasserstein-Kantorovich distance, and referred to as “HWI inequality” in
the work of Otto and Villani.

Corollary 3 (HWI inequality [16,17]).Let µ be a probability measure on R
n of

the form dµ(x) = e−V (x)dx, where V is a twice differentiable function satisfying
HessV � c for some c ∈ R. Then, for every non-negative compactly supported
smooth function f with

∫
f dµ = 1,

Entµ(f ) � W(µ, f dµ)
√
Iµ(f )− c

2
W2(µ, f dµ).

Proof. Apply Theorem 1 tof and to some non-negative compactly supportedg,
and use again

∫
∇θ.∇f dµ � −

√∫
|∇θ |2f dµ

∫ |∇f |2
f

dµ = −W(f dµ, gdµ)√Iµ(f ).
Thus we have

Entµ(g) � Entµ(f )−W(f dµ, gdµ)
√
Iµ(f )+ c

2
W2(f dµ, gdµ).

Wheng → 1 we get the result. ��
Otto and Villani observed that Corollary 1 implies Corollary 2 (actually with-

out any convexity condition onV ), and that Corollary 2 and Corollary 3 imply
Corollary 1.

Let us comment briefly on the equality cases in these inequalities when the
measureµ is the Gaussian measureγn. In this case the main inequality that was
used,assuming the Brenier map was smooth (i.e.,θ wasC2), was

log det(I + Hessθ) � �θ.

Equality cases require Hessθ = 0 or, equivalently,∇θ ≡ u for someu ∈ R
n. Thus

the Brenier map needs to be a translation. In order to prove the logarithmic Sobolev
or the transport inequality, we takef or g equal to 1 and in these cases we can
easily check that, if∇θ ≡ u, there is equality at every step. So we can guess that the
equality cases in these two inequalities are given by functionsf for whichf dγn is
a translation ofγn, meaning also functionsf that are exponential :f (x) = c ex.u.
Making this argument rigorous would require too many technical results on the
behavior of the Brenier map and on the regularity of the solutions of the Monge-
Ampère equation, and would not simplify the existing proofs. However it helps to
understand the picture: exponential functions arise naturally when translating the
Gaussian measure.
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3. Applications of a result of Caffarelli

This section deals with non-negativelog-concave functionsf onR
n (meaning

logf is concave) and convex sets inR
n. In this particular setting, wheref andg have

convex supports, regularity results ofCaffarelli (see [7] and references therein)
ensure that the Brenier map betweenf andg is smooth under weak assumptions
onf andg. We will always assume that we are in a situation were these regularity
results apply.

Recently,Caffarelli [7] made a crucial observation on the behavior of the Bre-
nier map. He proved that given a Gaussian probability measureρ and a probability
measureµ with log-concave density with respect toρ, the Brenier map pushing
forwardρ ontoµ is a contraction (i.e., 1-Lipschitz). We can even have a quantitative
estimate. Letµ be a probability measure of the formdµ(x) = e−V (x)dx where
V is a smooth function with HessxV � c > 0. Then if∇φ is the Brenier map
pushingγn forward toµ,we have

0 � Hessφ � 1√
c

· (5)

Let us mention a direct consequence of this estimate. It is possible to transport
isoperimetric, logarithmic Sobolev or Poincar´e (this was mentioned by Caffarelli)
inequalities from the Gaussian measure to the measureµ. This allows us to rewrite
the inequalities ofBakry & Emery [1] (Corollary 1) and ofBakry & Ledoux
[2] for the measureµ. For instance, the strongest of these inequalities, the Gaus-
sian isoperimetric inequality, states in its functional form [4] that, for any smooth
compactly supported functionf : R

n → [0,1],

U
(∫

f dγn

)
�

∫ √
U2(f )+ |∇f |2 dγn. (6)

HereU(a) is the Gaussian surface measure of any half-space of Gaussian measure
a ∈ [0,1]. In other words, if

'(t) =
∫ t

−∞
e−u2/2 du√

2π
,

thenU = '′ ◦'−1. Now, forµ as above, we deduce from (6) that for every smooth
compactly supported functiong : R

n → [0,1],

U
(∫

gdµ

)
�

∫ √
U2(g)+ 1

c
|∇g|2 dµ. (7)

Indeed, for giveng apply (6) tof (x) = g(∇φ(x)) and use (5) together with the
definition of mass transport. Inequality (7) appeared first in [2]. It is known that
Corollary 1 is a consequence of (7) (see [11] for a written proof).

The applications of the result of Caffarelli we would like to outline concern the
Gaussian correlation inequality (see [18] for references and partial results). This
celebrated conjecture claims that, for two symmetric convex setsA andB,

γn(A ∩ B) � γn(A)γn(B). (8)



Some Applications of Mass Transport to Gaussian-Type Inequalities 265

An equivalent way of stating the Gaussian correlation inequality is to say that, for
every even non-negative log-concave functionsf andg,∫

fg dγn �
(∫

f dγn

) (∫
gdγn

)
.

One of the best results in this direction is due toHargé [10] who proved that
(8) holds whenA is any symmetric convex set andB is an ellipsoid, possibly
degenerate. Ellipsoids are assumed to be centered at the origin. By degenerate
ellipsoid, we simply mean a limit of ellipsoids, as for instance a symmetric strip,

Bu = {x ∈ R
n ; |x.u| � 1}.

In particular, Harg´e’s inequality generalized a result ofSidak [19] who proved (8)
whenB is a symmetric strip. The proof of Harg´e is based on a semi-group method
involving a modified Ornstein-Uhlenbeck semi-group. We would like to present
here a simple proof that uses the Brenier map and the result of Caffarelli. The
ellipsoidB is given by a positive symmetric linear mapH for whichB = {|Hx| �
1}. We introduce the Gaussian probability measureρ given by

dρ(x) = 1

(
√

2π)n
√

detH
e−H−1x.x dx.

After the change of variabley = √
H−1x, Hargé’s inequality becomes:

ρ(A ∩ Bn2) � ρ(A)ρ(Bn2),

for every convex symmetric setA and for the Euclidean unit ballBn2 . Let ρA be
the normalized restriction of the measureρ to the setA, andT be the Brenier map
betweenρ andρA. By the result of Caffarelli we know thatT is a contraction. And
by symmetry of the situation,T (−x) = −T (x). In particularT (0) = 0. Hence

T (Bn2) ⊂ Bn2 .
But then

ρ(A ∩ Bn2)
ρ(A)

= ρA(Bn2) = ρ(T −1(Bn2)) � ρ(Bn2),

which is precisely the desired correlation inequality.
As the reader may have noticed, the symmetry ofA was only used to give

T (0) = 0. This allows us to obtain some (weaker) statement for non-symmetric
convex bodies. For a convex bodyK let us denote by Iso(K) the group of isometries
leavingK (globally) invariant and by Fix(K) the subset ofK,

Fix(K) := {x ∈ K ; r(x) = x ∀r ∈ Iso(K)}.
Of course, ifK is symmetric, Fix(K) = {0}, sincex → −x has only 0 as fixed
point. But, for instance, for the regular simplex�, we also have Fix(�) = {0}. We
have:
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Proposition 1. Let A be a convex body with Fix(A) = {0}. Then

γn(A ∩ Bn2) � γn(A)γn(Bn2).
Proof. We have to prove that, ifT is the Brenier map pushingγn forward toγA,
the normalized restriction of the Gaussian measure toA, thenT (0) = 0.

Claim. Let T be the Brenier map pushing γn forward to γA (the normalized re-
striction of the Gaussian measure to A). Then for an isometry r the map Tr(x) :=
r−1T (r(x)) is the Brenier map pushing γn forward to γr−1(A).

Proof of the claim. The Gaussian measure is invariant under isometries and thusTr
clearly pushesγn forward toγr−1(A). We need to check thatTr is the Brenier map,
i.e., thatTr is the gradient of a convex function. IfT = ∇φ, introduceφr(x) =
φ(r(x)). Thenφr is convex and∇φr(x) = r∗∇φ(r(x)) = r−1T (r(x)) = Tr(x).
��

We finish the proof of the proposition. The previous claim combined with the
uniqueness of the Brenier map ensures that, forr ∈ Iso(A), we haveTr = T and
T (r(x)) = r(T (x)). This givesT (0) = r(T (0)) and thereforeT (0) ∈ Fix(A).And
by assumption this impliesT (0) = 0 and finishes the proof.��

The next non-symmetric result is related to a statement ofSzarek & Werner
[20]. They proved that, for every convex bodyA of R

n and for every stripB
symmetric with respect to the Gaussian barycenter ofA, γn(A∩B) � γn(A)γn(B).
Our result will deal with “medians” rather than barycenters. First we treat the one-
dimensional case. We introduce the median of a continuous functionf : R → R+
with respect to the Gaussian measureγ as the set

medγ (f ) :=
{
x ∈ R ;

∫ +∞

x

f dγ = 1

2

∫
R

f dγ

}
.

For a log-concave function, the median is obviously unique.

Proposition 2. Let f be a non-negative log-concave function on R with med(f ) =:
x0. Then, for every α � 0,∫ x0+α

x0−α
f dγ � γ ([−α, α])

∫
R

f dγ � γ ([x0 − α, x0 + α])
∫

R

f dγ.

Proof. Let T be the Brenier map pushingγ forward to f dγ/(
∫
f dγ ). Mass

transport in dimension one preserves the median. Indeed, we have by definition,∫ ∞

T (0)
f dγ =

(∫
R

f dγ

) ∫ ∞

0
dγ = 1

2

(∫
R

f dγ

)
.

ThereforeT (0) = x0. This implies, sinceT is a contraction, thatT ([−α, α]) ⊂
[x0 − α, x0 + α] which in turn gives∫ x0+α

x0−α
f dγ

/( ∫
R

f dγ
)

= γ (T −1[x0 − α, x0 + α]) � γ ([−α, α]).

And by the log-concavity of the Gaussian measure,γ ([−α, α]) � γ ([x0 −α, x0 +
α]). ��
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Remark 1. An equivalent way of stating Proposition 2 is to say that iff is a non-
negative log-concave function onR with medγ (f ) =: x0, then for everyeven
non-negative log-concave functiong,∫

R

f (x)g(x − x0) dγ (x) �
∫

R

f dγ

∫
R

g dγ �
∫

R

f dγ

∫
R

g(x − x0) dγ (x).

Indeed, with the same notation as in the above proof, we have∫
R

f (x)g(x − x0) dγ (x)
/( ∫

R

f dγ
)

=
∫

R

g(T (x)− x0) dγ (x).

SinceT is a (increasing) contraction, we can writeT (x) = x+θ ′ whereθ is concave
and satisfiesθ ′(0) = x0. Then,T (x)− x0 = x− x0 + θ ′(x) = x+ (θ ′(x)− θ ′(0)).
The functionθ ′ is non-increasing, thereforeT (x) − x0 is bigger thanx if x is
negative, and smaller thanx if x is non-negative. But the functiong, being even
and log-concave is non-decreasing onR− and non-increasing onR+. This implies
thatg(T (x)− x0) � g(x), which gives the result.

Proposition 2 leads to a generalization of the result of Sidak. For a convex body
K in R

n and a directionu (which means for us a vectoruwith |u| = 1), the Gaussian
median medγn(K, u) of K in the directionu is the unique realt satisfying

γn(K ∩ {x.u � t}) = 1
2γn(K).

Corollary 4. Let K be a convex body of R
n. Fix a direction u and set t0 :=

medγn(K, u). Then, for every strip C of the form C = {t0 − α � |x.u| � t0 + α},
γn(K ∩ C) � γn(K)γ ([−α, α]) � γn(K)γn(C).

Proof. Introduce the section functionfu(t) := γn−1(K ∩ (u⊥ + tu)). By the
Prékopa-Leindler inequality, the functionfu is log-concave onR. We have

γn(K) =
∫

R

fu(t)dγ (t)

and

γn(K ∩ {x.u � t0}) =
∫ +∞

t0

fu(t) dγ (t).

In particularfu hast0 as Gaussian median. Apply Proposition 2 and observe that∫ t0+α

t0−α
fu(t) dγ (t) = γn(K ∩ C). ��

Remark 2. The use of the median is natural if nice correlation inequalities are
desired, in the spirit of the results of Szarek and Werner. However it was not crucial
in the proof. Indeed, letf be a non-negative log-concave function onR and fix
t ∈ R. Let k ∈ [0,1] be such that∫ t

−∞
f dγ = k

∫
R

f dγ.
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Then, by definition of mass transport, the Brenier mapT pushingγ forward to
f dγ/(

∫
f dγ ) satisfies'(T −1(t)) = k, where' denotes as before the Gaussian

distribution function. Using the fact thatT is a contraction leads to the following
inequality: forα ∈ R,∫ t+α

t−α
f dγ � γ (['−1(k)− α,'−1(k)+ α])

∫
R

f dγ. (9)

It is then possible to derive a minorant for the intersection of a convex body inR
n

with a strip. It must be noted that when applied to the barycenter inequality (9)
might be weaker than the one of Szarek and Werner. For instance, if the barycenter
is at the origin and we apply (9) fort = 0, the termγ (['−1(k)− α,'−1(k)+ α])
on right-hand side is certainly smaller thanγ ([−α, α]).

4. Appendix: proof of Lemma 1

For a convex functionφ with domainU , the function�Aφ defined almost-
everywhere is non-negative and�φ (in the sense of distributions) is a non-negative
measure onU . Recall that, by Rademacher’s theorem (see [8]), the functionφ has
a gradient∇φ almost everywhere, and that∇φ is equal to the derivative ofφ in the
sense of distribution. Therefore Lemma 1 is equivalent to

�Aφ � �φ.
We are led to prove that for any smooth, compactly supported inU , non-negative
functionf , ∫

f�Aφ �
∫
φ�f. (10)

Forh > 0 introduce, for any functiong onR
n,

gh(x) := g(x + he1)+ g(x − he1)− 2g(x)

h2 ·
Then, denoting by(∂Aφ)11 := Hessxφ(e1).e1 the second derivative in the sense of
Aleksandrov (where it exists) ofφ in the directione1, we have, almost everywhere,

lim
h→0

φh(x) = (∂Aφ)11(x).

But obviously, ∫
φhf =

∫
φfh.

Therefore by Fatou’s lemma sinceφh � 0,∫
f (∂Aφ)11 � lim inf

∫
φfh =

∫
φ(∂f )11.

We have the same inequalities for the other directions and this leads to (10).
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